Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 627(8004): 620-627, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448595

RESUMO

The fungus Candida albicans frequently colonizes the human gastrointestinal tract, from which it can disseminate to cause systemic disease. This polymorphic species can transition between growing as single-celled yeast and as multicellular hyphae to adapt to its environment. The current dogma of C. albicans commensalism is that the yeast form is optimal for gut colonization, whereas hyphal cells are detrimental to colonization but critical for virulence1-3. Here, we reveal that this paradigm does not apply to multi-kingdom communities in which a complex interplay between fungal morphology and bacteria dictates C. albicans fitness. Thus, whereas yeast-locked cells outcompete wild-type cells when gut bacteria are absent or depleted by antibiotics, hyphae-competent wild-type cells outcompete yeast-locked cells in hosts with replete bacterial populations. This increased fitness of wild-type cells involves the production of hyphal-specific factors including the toxin candidalysin4,5, which promotes the establishment of colonization. At later time points, adaptive immunity is engaged, and intestinal immunoglobulin A preferentially selects against hyphal cells1,6. Hyphal morphotypes are thus under both positive and negative selective pressures in the gut. Our study further shows that candidalysin has a direct inhibitory effect on bacterial species, including limiting their metabolic output. We therefore propose that C. albicans has evolved hyphal-specific factors, including candidalysin, to better compete with bacterial species in the intestinal niche.


Assuntos
Candida albicans , Proteínas Fúngicas , Microbioma Gastrointestinal , Hifas , Intestinos , Micotoxinas , Simbiose , Animais , Feminino , Humanos , Masculino , Camundongos , Bactérias/crescimento & desenvolvimento , Bactérias/imunologia , Candida albicans/crescimento & desenvolvimento , Candida albicans/imunologia , Candida albicans/metabolismo , Candida albicans/patogenicidade , Proteínas Fúngicas/metabolismo , Microbioma Gastrointestinal/imunologia , Hifas/crescimento & desenvolvimento , Hifas/imunologia , Hifas/metabolismo , Imunoglobulina A/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Micotoxinas/metabolismo , Virulência
2.
Eur J Med Chem ; 242: 114678, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36037789

RESUMO

Diseases caused by biofilm-forming pathogens are becoming increasingly prevalent and represent a major threat to human health. This trend has prompted a search for novel inhibitors of microbial biofilms which could, for example, be used to potentiate existing antibiotics. Naturally-occurring, halogenated furanones isolated from marine algae have proven to be effective biofilm inhibitors in several bacterial species. In this work, we report the synthesis of a library of novel furanones and their subsequent evaluation as biofilm inhibitors in several opportunistic human pathogens including S. enterica, S. aureus, E. coli, S. maltophilia, P. aeruginosa and C. albicans. A number of the most potent compounds were subjected to further analysis by confocal laser-scanning microscopy for their effects on P. aeruginosa and C. albicans biofilms individually, in addition to mixed polymicrobial biofilms. Lastly, we investigated the impact of a promising candidate on survival rates in vivo using a Galleria mellonella model.


Assuntos
Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia , Biofilmes , Candida albicans , Humanos , Pseudomonas aeruginosa
3.
Cell Microbiol ; 23(10): e13378, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34245079

RESUMO

The human pathogenic fungus Candida albicans is a frequent cause of mucosal infections. Although the ability to transition from the yeast to the hypha morphology is essential for virulence, hypha formation and host cell invasion per se are not sufficient for the induction of epithelial damage. Rather, the hypha-associated peptide toxin, candidalysin, a product of the Ece1 polyprotein, is the critical damaging factor. While synthetic, exogenously added candidalysin is sufficient to damage epithelial cells, the level of damage does not reach the same level as invading C. albicans hyphae. Therefore, we hypothesized that a combination of fungal attributes is required to deliver candidalysin to the invasion pocket to enable the full damaging potential of C. albicans during infection. Utilising a panel of C. albicans mutants with known virulence defects, we demonstrate that the full damage potential of C. albicans requires the coordinated delivery of candidalysin to the invasion pocket. This process requires appropriate epithelial adhesion, hyphal extension and invasion, high levels of ECE1 transcription, proper Ece1 processing and secretion of candidalysin. To confirm candidalysin delivery, we generated camelid VH Hs (nanobodies) specific for candidalysin and demonstrate localization and accumulation of the toxin only in C. albicans-induced invasion pockets. In summary, a defined combination of virulence attributes and cellular processes is critical for delivering candidalysin to the invasion pocket to enable the full damage potential of C. albicans during mucosal infection. TAKE AWAYS: Candidalysin is a peptide toxin secreted by C. albicans causing epithelial damage. Candidalysin delivery to host cell membranes requires specific fungal attributes. Candidalysin accumulates in invasion pockets created by invasive hyphae. Camelid nanobodies enabled visualisation of candidalysin in the invasion pocket.


Assuntos
Candida albicans , Proteínas Fúngicas , Proteínas Fúngicas/genética , Humanos , Hifas , Virulência
4.
Cell Host Microbe ; 28(6): 798-812.e6, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33022213

RESUMO

Phagosomes must maintain membrane integrity to exert their microbicidal function. Some microorganisms, however, survive and grow within phagosomes. In such instances, phagosomes must expand to avoid rupture and microbial escape. We studied whether phagosomes regulate their size to preserve integrity during infection with the fungal pathogen Candida albicans. Phagosomes release calcium as C. albicans hyphae elongate, inducing lysosome recruitment and insertion, thereby increasing the phagosomal surface area. As hyphae grow, the expanding phagosome consumes the majority of free lysosomes. Simultaneously, lysosome biosynthesis is stimulated by activation of TFEB, a transcriptional regulator of lysosomal biogenesis. Preventing lysosomal insertion causes phagosomal rupture, NLRP3 inflammasome activation, IL-1ß secretion and host-cell death. Whole-genome transcriptomic analysis demonstrate that stress responses elicited in C. albicans upon engulfment are reversed if phagosome expansion is prevented. Our findings reveal a mechanism whereby phagosomes maintain integrity while expanding, ensuring that growing pathogens remain entrapped within this microbicidal compartment.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Candida albicans/crescimento & desenvolvimento , Inflamassomos/metabolismo , Lisossomos/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fagossomos/fisiologia , Animais , Cálcio/metabolismo , Morte Celular , Linhagem Celular , Células Cultivadas , Perfilação da Expressão Gênica , Interações entre Hospedeiro e Microrganismos , Hifas/crescimento & desenvolvimento , Interleucina-1beta/metabolismo , Macrófagos/microbiologia , Macrófagos/fisiologia , Masculino , Fusão de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Micoses/metabolismo , Micoses/microbiologia , Fagocitose
5.
mBio ; 11(2)2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345638

RESUMO

The capacity of Candida albicans to reversibly change its morphology between yeast and filamentous stages is crucial for its virulence. Formation of hyphae correlates with the upregulation of genes ALS3 and ECE1, which are involved in pathogenicity processes such as invasion, iron acquisition, and host cell damage. The global repressor Tup1 and its cofactor Nrg1 are considered to be the main antagonists of hyphal development in C. albicans However, our experiments revealed that Tup1, but not Nrg1, was required for full expression of ALS3 and ECE1 In contrast to NRG1, overexpression of TUP1 was found to inhibit neither filamentous growth nor transcription of ALS3 and ECE1 In addition, we identified the transcription factor Ahr1 as being required for full expression of both genes. A hyperactive version of Ahr1 bound directly to the promoters of ALS3 and ECE1 and induced their transcription even in the absence of environmental stimuli. This regulation worked even in the absence of the crucial hyphal growth regulators Cph1 and Efg1 but was dependent on the presence of Tup1. Overall, our results show that Ahr1 and Tup1 are key contributors in the complex regulation of virulence-associated genes in the different C. albicans morphologies.IMPORTANCECandida albicans is a major human fungal pathogen and the leading cause of systemic Candida infections. In recent years, Als3 and Ece1 were identified as important factors for fungal virulence. Transcription of both corresponding genes is closely associated with hyphal growth. Here, we describe how Tup1, normally a global repressor of gene expression as well as of filamentation, and the transcription factor Ahr1 contribute to full expression of ALS3 and ECE1 in C. albicans hyphae. Both regulators are required for high mRNA amounts of the two genes to ensure functional relevant protein synthesis and localization. These observations identified a new aspect of regulation in the complex transcriptional control of virulence-associated genes in C. albicans.


Assuntos
Candida albicans/genética , Proteínas Repressoras/genética , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Hifas/crescimento & desenvolvimento , Estágios do Ciclo de Vida/genética , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...